首页 > 知识百科正文

最新六年级数学上册课件(优选6篇)

 2023-10-02  阅读 0

六年级数学上册课件【篇1】

  《分数乘整数》是义务教育课程标准实验教科书小学数学六年级上册第二单元的内容。从学生已有的知识经验出发合理地使用教材,本课教学重点是让学生理解算理、掌握计算法则。

  本课是在整数乘法和分数加法的基础上学习的,通过直观操作帮助学生理解算理并正确进行计算,在此基础上拓宽学生的知识面。

  知识与能力:

  在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

  过程与方法:

  通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

  情感态度与价值观:

  引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

  教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

  教学难点:引导学生总结分数乘整数的计算法则。

  教学过程

六年级数学上册课件【篇2】

  1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。

  2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。

  3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。

  使学生经历从具体情境中抽象出比的过程,理解比的意义,了解比的各部分名称。

  理解比的意义,掌握比与比值的区别。

  一、情境导入

  1、出示长方形。出示条件:长3米,宽2米,你能求什么呢?

  预设可能提出的问题:

  (1)周长和面积

  (2)长比宽多几米?

  (3)宽比长短几米?

  (4)长是宽的几倍?

  (5)宽是长的几分之几?

  师:哪些问题是表示两个量之间的倍数关系的?今天我们一起来学习长与宽的另一种关系:比。

  二、共同探讨,学习新知(1)比是一种什么样的概念?学生自学课本P68页例1,看看谁能弄懂这一部分内容。

  (2)交流小结:

  板书:长和宽的比是3比2,记作3:2宽和长的比是2比3,记作2:3(3)说一说:2∶3和3∶2中,比的前项和后项分别是是几?

  (教师指出比是有序概念,颠倒比的前项和后项,意义会发生改变)

  (二)、完

  成试一试在日常生活中,我们经常用比表示两个数量之间的关系,比如这瓶洗洁液,上面的使用说明就是用比来表示的。(呈现“试一试”)(1)指图中的.1∶4,问:这里的白色部分和蓝色部分分别表示什么?你知道1∶4表示什么吗?

  (2)把每种溶液里的洗洁液看作1份,水分别可以看作几份?

  (3)还可以怎样表示每种溶液里洗洁液和水体积之间的关系?(引导学生理解:比如这个1:4,表示1份洗洁液要加4份水,也就是说水的体积是洗洁液的4倍,洗洁液的体积是水的1/4。)

  三、教学例

  2(一)通过刚才的学习,我们对比已经有了一个初步的认识,下面我们再来看一个例子。(呈现例2)

  1、想一想,我们怎样求两人的速度?

  2、

  2、学生计算答案,汇报填表。

  3、明确:因为速度=路程÷时间,速度实际上表示了路程与时间的关系。我们也可以用比来表示路程与时间的关系。(出示:小军走的路程与时间的比是比是900∶15。)900∶15表示什么呢?(路程÷时间。)

  4、你能用比来表示小伟走的路程与时间的比吗?(出示:小伟走的路程与时间的比是比是900∶20)

  (二)、理解比的意义

  1、刚才我们已经得出了不少的比,仔细观察一下例2中的比:900比15,900比20,以及例1中的2比3,3比2等等,你觉得比又可以表示两个数之间什么样的关系呢(板书:两个数的比 两个数相除)

  2、教师根据学生回答再引导:例1中的比表示两个数的倍数关系,例2中的比表示路程÷时间,不管是例

  1、例2还是练习中的比都表示两个数相除。所以两个数的比到底表示两个数的什么关系?(板书:一种相除关系)

  (三)、认识“比值”、及与“比”的区别:

  1、明确了比的意义,我们一起来算一算,上述比的前项除以后项的商是多少?

  我们把比的前项除以后项所得的商叫做比值。

  2、说说这几个比值分别表示什么?

  3、讨论:同学们觉得比与比值的区别在哪里?

  (比表示两个数相除的一种关系,由前项、比号、后项组成。比值表示比的前项除以后项所得的商,比值是一个数,可以是分数、小数或整数。)

  (四)、“试一试”

  1、完成“试一试”:(学生独立完成,指名板演)

  2、教师介绍:根据分数和除法的关系,两个数的比也可以写成分数形式。例如,2∶3除了写成这种形式以外,也可以写成分数形式的比:3/2。(板书:3/2)注意这时应把它看成是一个比,而不是分数,所以先写比的前项,再写横线表示比,最后写后项,仍应读作3比2。)

  (五)、比、除法和分数的关系

  1、让学生通过观察、比较、交流得到比与分数、除法的关系:比的前项、后项、比号、比值分别相当于除法算式或分数中的什么吗?比的后项可以是0吗?(根据学生的汇报填表)相互关系 区别比 前项 比号(:) 后项 比值除法分数

  2、完成“练一练”的1、2、3小题。

  3、完成练习十三的第4题。

  4、糖水的甜度(1)(出示:两杯糖水,并标出糖与水的质量的比,第一杯1∶20,第二杯1∶25)你知道哪一杯水更甜吗?为什么?

  (2)(出示第三杯糖水,标出糖4克,水100克。)你知道这杯糖水和刚才的哪一杯一样甜?先想一想,再与同桌交流,说说你是怎样比较的?

  (3)根据第一杯糖和水质量的比是1∶20,你能说出第一杯糖与糖水质量的比吗?

  5、知识介绍:

  同学们,其实比在我们生活中的应用是非常广泛的。你听说过著名的“黄金比吗?”(课件介绍“黄金比”)。

  今天我们学习了什么?你们有什么收获吗?还有什么问题吗?

六年级数学上册课件【篇3】

  教材简析:

  这部分内容主要教学比的意义、比与分数、除法的关系。例1、例2教学认识比的意义。认识比时,主要利用学生对两个数量之间关系的已有认识,先引导学生分别认识同类量的比(例1)和不同类量的比(例2),并逐步抽象出比的意义。进而引导学生根据比的意义以及分数与除法的关系,主动探索比与分数、除法的关系,自我完善认知结构。在例1、例2随后的试一试、练一练中,教材都尽可能为学生提供自主探索和尝试的机会,尝试通过学生的独立思考进一步感受比的意义,并主动探索比与分数、除法的关系。

  练习十三中的5个练习题分别从不同的角度对比的意义、比值以及相关知识间的联系进行了合理操练,且形式多样,目的明确。

  可以看出教材这样有序的编排、呈现内容,不仅有利于学生在新旧知识之间建立起合适的联系,而且有利于学生主动参与探索活动,并在活动中全面准确的理解比的意义,构建起对比、除法、分数三者之间完整的认知结构。

  教学目标:

  1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。

  2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。

  3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。

  重点:理解比的意义

  难点:理解比与分数、除法的关系

  教学准备:多媒体课件、挂图、小黑板

  教学过程:

  1、谈话:今天这节课,老师要和同学们一起学习比的知识。(板书:比)关于比,你想了解一些什么?(学生可能回答:什么是比?学了比有什么用?数学上的比与生活中的比一样吗?)

  2、教师根据学生的回答进行引发:对,生活中也有比,比如一场足球赛的比分是2∶0,它与数学上的比一样吗?老师希望通过今天的学习,我们自己来找到这些问题的答案好吗?

  设计意图:

  开门见山式的揭示课题显的简洁明确,导入通过学生对学习内容的相关议论,引导学生产生了解比、认识比的心理需求,为本课的学习对象创设一个良好的研究氛围。

  (一)、呈现例1挂图:妈妈早晨准备了2杯果汁和3杯牛奶。

  1、利用旧知进行比较:

  (1)图中提供了2个数量:2杯果汁和3杯牛奶。根据这两个数量,我们怎样来对果汁和牛奶的杯数进行比较?(根据学生回答,教师整理板书:)

  相差关系{牛奶比果汁多1杯倍数关系{果汁的杯数相当于牛奶的2/3

  果汁比牛奶少1杯牛奶的杯数相当于果汁的3/2

  (2)小结:同学们,我们已经知道两个数量相比较,既可以用减法比较两个数量之间相差多少,也可以用除法或分数来表示两者之间的倍数关系。今天我们认识的比就是专门对这后一种关系进行的研究。

  2、比的教学:

  (1)(指板书:)果汁的杯数相当于牛奶的2/3。我们还可以说成果汁与牛奶杯数的比是2比3(出示)。想一想,牛奶的杯数相当于果汁的3/2。还可以怎样说?(出示:牛奶与果汁杯数的比是3比2。)

  3、比的读写:

  (1)师介绍:2比3怎么写呢?我们一起来看:2比3记作2∶3(板书:2∶3,先写2,再在中间写上两个小圆点,读作比,注意与语文中的冒号不同,最后写3。一起来写一写,读一读。)

  (2)指导学生写:3比2怎么写呢?谁来写一写?

  (3)介绍名称:刚才我们写在中间的两个小圆点(∶)是比号(板书:比号),比号前面的数叫做比的前项,比号后面的数叫做比的后项。(板书:前项后项)

  (4)谁来说一说:2∶3这个比中,比的前项是几?比的后项是几?在3∶2这个比中,2是比的什么?3是比的什么?

  4、比是有序概念

  (1)同学们看一看,刚才的比的前项是2,这儿的2怎么又是比的后项了呢?

  (2)对!颠倒两个数量的位置,就会得出另一个比,它的意义也就不同。因此大家在叙述的时候,一定要说清楚是哪个数量与哪个数量在比,不可颠倒顺序。

  设计意图:

  例1的教学首先抓住了两个环节:首先通过已有知识与经验使学生认识到用减法可以表示两个数量的相差关系,用分数或除法可以表示两个数量之间的倍数关系,而这里认识的比则专门框定于后一种情况,这样可使教学建立在一个清晰的前提条件下。其次又重点引导学生认识比,使学生体会到比是对两个数量进行比较的又一种数学方法。在介绍比的各部分名称后,结合两个比的前后项的不同巧妙帮助学生明确比是一个有序的概念,这样的教学安排符合学生的认知规律,也显得层次清晰,条理有序。

  (二)、完成试一试

  (出示安利瓶)在日常生活中,我们经常用比表示两个数量之间的关系,比如这瓶洗洁液,上面的使用说明就是用比来表示的。(呈现试一试)

  (1)指图中的1∶4,问:这里的白色部分和蓝色部分分别表示什么?你知道1∶4表示什么吗?

  (2)把每种溶液里的洗洁液看作1份,水分别可以看作几份?

  (3)还可以怎样表示每种溶液里洗洁液和水体积之间的关系?(引导学生理解:比如这个1:4,表示1份洗洁液要加4份水,也就是说水的体积是洗洁液的4倍,洗洁液的体积是水的1/4。)

  设计意图:

  通过引导学生参与讨论洗洁液与水体积之间关系的表示方法,使学生初步体会到比与除法、分数之间的内在联系。既利于后面教学比、分数、除法三者之间的关系,也有利于加深学生对比的意义的认识。

  (一)通过刚才的学习,我们对比已经有了一个初步的认识,下面我们再来看一个例子。(呈现例2)

  1、想一想,我们怎样求两人的速度?

  2、2、学生计算答案,汇报填表。

  3、明确:因为速度=路程时间,速度实际上表示了路程与时间的关系。我们也可以用比来表示路程与时间的关系。(出示:小军走的路程与时间的比是比是900∶15。)900∶15表示什么呢?(路程时间。)

  4、你能用比来表示小伟走的路程与时间的比吗?(出示:小伟走的路程与时间的比是比是900∶20)

  (二)、理解比的意义

  1、刚才我们已经得出了不少的比,仔细观察一下例2中的比:900比15,900比20,以及例1中的2比3,3比2等等,你觉得比与什么有关?两个数的比表示什么呢?(板书:两个数的比两个数相除)

  2、教师根据学生回答再引导:例1中的比表示两个数的倍数关系,例2中的比表示路程时间,不管是例1、例2还是练习中的比都表示两个数相除。所以两个数的比到底表示两个数的什么关系?(板书:一种相除关系)

  设计意图:

  例2通过教学两个不同类量的比,使学生进一步完善对比的认识。一方面通过题中的填表,使学生初步体会到速度是路程与时间比较的结果,再通过用比表示这一关系重点启发学生用自己的话来说一说,在描述比的意义时重点强调了比与除法的关系,在通过学生与教师的互动互说,共同领悟中使学生对比的意义有一个本质的理解。

  (三)、认识比值、及与比的区别:

  1、在900∶15这个比中,比的前项是几?后项是几?比的前项除以后项的商是几?

  我们把比的前项除以后项所得的商叫做比值。算算900∶15这个比的比值是几?

  2、想一想,900∶20这个比的比值是多少?这两个比值60、45也就表示什么?

  3、你能说出例1中的各个比的比值分别是多少吗?

  4、讨论:同学们觉得比与比值的区别在哪里?

  (比表示两个数相除的一种关系,由前项、比号、后项组成。比值表示比的前项除以后项所得的商,比值是一个数,可以是分数、小数或整数。)

  设计意图:

  比与比值是互相联系而又有区别的两个概念,在学生初步认识比值后就对这两个概念进行比较既有利于学生对两个概念的的理解和掌握,又为后继教学区分两种容易混淆的题型化简比和求比值奠定了基础。

  (四)、试一试

  1、完成试一试:(学生独立完成,指名板演)

  2、教师介绍:根据分数和除法的关系,两个数的比也可以写成分数形式。例如,2∶3除了写成这种形式以外,也可以写成分数形式的比:3/2。(板书:3/2)注意这时应把它看成是一个比,而不是分数,所以先写比的前项,再写横线表示比,最后写后项,仍应读作3比2。)

  (五)、比、除法和分数的关系

  1、让学生通过观察、比较、交流得到比与分数、除法的关系:比的前项、后项、比号、比值分别相当于除法算式或分数中的什么吗?比的后项可以是0吗?(根据学生的汇报填表)

  相互关系

  区别

  比

  前项

  比号(:)

  后项

  比值

  除法

  分数

  2、比的后项为什么不能是0?

  设计意图:

  高年级同学已经具有一定的探究解题能力,试一试后通过两个问题的讨论,帮助学生进一步明确比与分数、除法的关系。交流汇报时,也能根据学生的汇报顺序来指导教学,充分发挥学生的主观能动性,使学生对比的认识更加透彻,认知结构得以进一步完善。

  1、完成练一练的1、2、3小题。

  2、判断题。

  (1)3/4只能读作四分之三。()

  (2)比的后项不能是零。()

  (3)可可的身高是1米,她爸爸的身高是178厘米,可可和她爸爸身高的比是1∶178。()

  3、完成练习十三的第3、4题。

  4、糖水的甜度

  (1)(出示:两杯糖水,并标出糖与水的质量的比,第一杯1∶20,第二杯1∶25)

  你知道哪一杯水更甜吗?为什么?

  (2)(出示第三杯糖水,标出糖4克,水100克。)

  你知道这杯糖水和刚才的哪一杯一样甜?先想一想,再与同桌交流,说说你是怎样比较的?

  (3)根据第一杯糖和水质量的比是1∶20,你能说出第一杯糖与糖水质量的比吗?

  5、知识介绍:

  同学们,其实比在我们生活中的应用是非常广泛的。你听说过着名的黄金比吗?(课件介绍黄金比)。

  设计意图:

  练习的设计层次清楚,形式活泼,沟通了知识间的内在联系,使学生经历了运用所学知识解决实际问题的过程,精美的课件展示黄金比令人赏心悦目。这个过程既帮助学生加深了对比的意义的理解,又积累了丰富的数学活动经验,大大拓展了学生的知识面,提高了数学思考能力。】

  今天我们学习了什么?你们有什么收获吗?还有什么问题吗?

六年级数学上册课件【篇4】

  1,面向学生:□小学 2,学科:数学

  2,课时:1课时

  3,学生课前准备:

  1)、预习教材77、78页及练习十八的内容。

  2)、收集生活中应用到百分数地方的知识。

  教养方面

  1)、让学生感受百分数在生产,工作和生活中的广泛应用。培养学生收集信息的能力。

  2)、提高学生自主探究学习的,培养学生观察事物,分析问题的能力,体验百分数的优点。

  教育方面

  让学生感受数学知识与日常生活的密切联系,激发学习兴趣,培养学生的比较,分析,综合能力的应用意识。

  发展方面

  培养学生分析问题,解决问题的能力,做到学科与生活联系起来。

  教学内容

  人教版义务教育课程标准实验教科书《数学》六年级上册77、78页及练习十八的内容。

  学情分析

  百分数在日常生活中应用非常广泛,教学中要从学生已有的知识和生活经验出发,帮助学生理解数学。教学中要注意加强知识间的联系,培养学生迁移,类推的能力,通过类比类推理解思路。

  根据学生学段的特点,教学中应开放课堂,推广学生自主探究的空间,让学生掌握自主学习的策略。

  教学目标

  1)、使学生认识百分数,知道百分数在生产,生活中的广泛应用。

  2)、理解百分数的意义,能正确地读,写百分数。

  3)、培养学生的比较,分析,综合能力和应用意识。

  教学重点

  熟知百分数的意义

  教学难点

  正确理解百分数的意义,正确区别百分数与分数的不同意义。

  教学方法

  教法:创设情境,质疑引导(引用从百度搜索的相关知识)

  学法:合作探究,自主交流

  教学准备

  1)、教学之前用百度在网上搜索“百分数在生活中的应用”的相关材料,找到了很多教案作为参考,了解到教学的重点和难点,确定课堂教学形式和方法。

  2)、根据课堂教学需要,利用百度搜索有关的“百分数的意义和写法”多媒体课件PPT,给生直观的感受,引发学生学习积极性和探索。

  教学过程

  活动一:师生交流,充分感知

  师: 同学们课前了解并收集了生活中的百分数,现在我们交流一下,好吗?

  生:我在衣服的标签上找到了棉68.5%,绦纶23.5%,晴纶8%。

  生:我在酒瓶的商标上找到了酒精度11.5%。

  生:我在牛奶盒上找到含乳量≥60%, 脂肪≥3.5%。

  生:我在亲亲果冻找到“中奖率为100%”

  师:同学们真了不起,找到了这么多百分数,虽然没学过,但都会读出来,我真佩服你们! 这么多的百分数,说明了什么?

  生:百分数的用途很广。

  生:百分数很重要,生活中离不开它。

  (评析:从学生熟悉的生活实际出发,使学生充分感知百分数,并创设了平等交流的氛围, 既激发了学生的学习兴趣,又让学生充分感受数学和生活的密切联系,同时体会到数学的价值。)

  活动二:合作探究,充分感悟

  师:老师也收集到了好多百分数,看,一次性筷子是日本人发明的,日本的森林覆盖率高达65%,但他们一次性筷子全靠进口;我国的森林覆盖率不到14%,却是出口一次性筷子的大国。

  (课前把百分数圈出来,用课件展示)

  (在这里用简单的两个百分数,自然地进行了环保教育。)

  师:人们这么喜欢用百分数,你们想知道百分数的哪些知识呢?

  生:百分数是什么样的数?它到底有什么用处?

  生:百分数和分数有什么联系和区别?哪些地方可以用百分数?

  师:同学们说得很好,下面我们就一起来研究这些问题。(板书:百分数的意义和 写法。)

  师:小组交流课前收集的百分数的意义。

  (学生拿出手中的材料,进行认真的思考、交流,准备汇报)

  生:我收集的是:衣服的标签上找到了棉68.5%,绦纶23.5%,晴纶8%。我的理解是把衣服的成份看作100份,其中棉占68.5份,所以68.5%表示棉占衣服成份的68.5%;涤纶占23.5份,23.5%表示涤纶占衣服成份的23.5%;晴纶占8份,23.5%表示晴纶占衣服成份的8%。

  生:我收集的是:太平洋的面积占海洋总面积的49%,我的理解是把海洋总面积看作100份,其中太平洋的面积占49份,49%是太平洋面积与海洋总面积比较的结果。

  生:我收集的是:中奖率为100%,我的理解是如果你购买100次,100次都中奖,100%是表示购买次数与中奖次数的比率。

  师:从同学们的理解中,你发现了什么?

  生:百分数表示的是两个数量之间的倍比关系,也就是表示一个数是另一个数的百分之几。(师板书)

  师:刚才我们通过想一想、比一比、议一议理解体会了百分数的意义,那百分数与我们学过了分数到底有什么联系和区别呢?(小组合作研究讨论,并作好记录)

  生:我们组认为它们的意义不同,百分数只能表示两个数量之间的关系,而分数有时可表示这种关系,有时只表示具体数量。写法也不同。

  生:我们组补充,百分数的分母都是100,容易比较大小,一看就清楚。

  生:分母是100的分数不一定是白分数。

  (评析:教师从学生熟悉的生活实例引入,创设了“现实数学”的情境,进一步引导学生根据自己的生活经验来理解感悟百分数的意义及优点,同时让学生感觉到数学知识来源于生活,又能服务于生活。小组合作的学习方式,使学生在互助合作中得到交流、沟通,碰撞出创造思维的火花,又培养了学生的合作意识和交往能力,不断体验到成功的喜悦,从而增强学好数学的信心。)

  活动三:主动应用,拓展升华

  师:通过努力,同学们对百分数的意义理解得相当透彻了,那么你会写百分数吗?会写请到黑板上写一个百分数。

  (学生有一拥而上,写出各种各样的百分数。)

  师:同学们写了这么多的百分数,你能任选一个说说它的意义吗?生:我选50%,这节课我举手4次,老师让我回答2次,我回答的 机会占举手次数的50%。

  生:我选96%,第三单元测查我们班及格人数44人,几个率约占全班人数45人的96%。

  生:我选120%,它的分子比100大,有意思,比如工人一天要生产20个零件,结果完成24个,完成的占生产任务的120%。师:通过这节课的学习,同学们能不能应用百分数的意义,用一句话表达对自己或同学、老师的满意率?

  生:我对自己的满意率为90%。

  生:我对自己的满意率为95%。对__的满意率100%。

  生:我对自己的满意率为95%。对同桌的满意率50%,对老师的满意率95%,因为同桌上课时老是吵我,而老师没有发现。

  生:我对老师意率为100%。

六年级数学上册课件【篇5】

  本单元内容包括比的意义、比的基本性质、化简比、按比分配解决实际问题等。本单元是在学生已经理解了除法的意义与基本性质、分数的意义与基本性质、分数乘除法的计算方法和解答分数除法实际问题的基础上进行教学的。

  由于本单元的知识与学生已有知识有着密切的联系,在教学时,教师应创设良好的学生自主学习的环境,引导学生自主探索与思考,并与同学展开积极的合作与交流,在特殊方法与一般方法的比较辨析中,进一步明晰知识的本质。

  教材还编排了很多问题情境图来突破教学中的重难点问题。

  例如:在例2按比分配解决实际问题中,教材在问题情境图和分析与解答过程中都采用图示直观地表示比的具体含义。

  这有利于学生理解这个比表示的是哪两个量之间的关系。同时,借助于直观图,也有利于学生运用数学语言转换各种信息,多元表达概念及数量关系,因而从本质上帮助学生理解数量关系,提高提出问题、分析问题、解决问题的能力。)

  第1课时比的意义

  教材48~49页的内容。

  1.在具体的情境中理解比的意义,学会比的读法、写法,掌握比的各部分名称及求比值的方法。

  2.经历探索比与分数、除法之间关系的过程,体会数学知识之间的内在联系,把握比的意义的本质。

  重点:

  理解比的意义以及比与分数、除法之间的关系。

  难点:

  理解比与分数、除法之间的关系,明确比与比值的区别。

  课件:

  学具。

  1.课件出示教材第48页情境图。

  教师提问:这就是杨利伟展示的两面旗,它们的长都是15cm,宽都是10cm。比较它们长和宽的关系,你能提出怎样的数学问题?

  (1)长比宽多多少厘米?15-10;

  (2)宽比长少多少厘米?15-10;

  (3)长是宽的多少倍?15÷10;

  (4)宽是长的几分之几?10÷15。

  2.师:今天我们将进一步研究这种倍数关系,它除了用除法表示外,还可以用一种新的数学方法——“比”来表示。(板书课题:比的意义)

  自学比的相关知识。

  学生自学教材第49页“做一做”之前的内容,思考问题:比各部分的名称是什么?怎样求一个比的比值?(汇报交流)

  (1)比各部分的名称。

  课件出示:15∶10=15÷10=,让学生说出比的各部分名称。(板书:前项、比号、后项、比值)

  (2)比值的意义。

  师:怎样求一个比的比值呢?(比的前项除以比的后项所得的商就是比值。)

  师:比和比值有什么区别?(引导学生小结:比表示一种关系,而比值是一个数,通常用分数表示,也可以用小数或整数表示。)

  师:同桌讨论一下,比与除法、分数之间有什么联系?比的前项、后项和比值分别相当于分数和除法算式中的什么?比的后项可以是0吗?

  讨论后根据学生交流反馈填写下表:

  联系

  区别

  除法

  被除数÷除数=商

  一种运算

  分子—分母=分数值

  比

  前项:后项=比值

  两个量的关系

  请尝试用字母表示比和除法、分数之间的内在联系。

  板书:a∶b=a÷b=(b≠0)。

  师:根据分数与除法的关系,两个数的比还可以写成分数形式。如15∶10也可以写成,仍读作“15比10”。

  师:足球比赛中的比分3∶0与我们今天学习的比一样吗?(引导学生理解:各类比赛中的比不是我们这节课学习的比,它只是一种计分形式,是比较大小的,是相差关系,不是相除关系。)

  1.教材第49页“做一做”第1题。

  请学生思考这两个比的量是同类量吗?比值表示什么意思?(所花钱数和练习本数是不同类的量,比值表示单价。)

  2.教材第49页“做一做”第2题。

  学生独立完成。反馈时,说说未知的前项或后项是怎样求出的。(引导学生根据比与除法的关系求出未知的前项或后项,归纳一般方法:前项=比值×后项;后项=前项÷比值。)

  3.教材第52页“练习十一”第1题。学生独立完成,反馈交流。

  说说这节课我们学习了什么?你有什么收获?

  教学时利用“神舟”五号升空这一现实素材自然地引出“比”,一方面激发学生的学习兴趣,感受数学与生活的密切联系;另一方面可适时进行爱国主义教育。在比较分析中,学生感受“比”和除法的联系,加深对同类量与不同类量比的意义的理解,对比的概念形成较为清晰的认识。

  在讨论交流中,教师引导学生进一步认识比和除法、分数之间的联系与区别,体会数学知识间的内在联系。

  第2课时比的基本性质

  教材第50~51页的内容。

  1.理解和掌握比的基本性质,初步掌握化简比的方法。

  2.在自主探索的过程中,分析比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。

  3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。

  重点:

  理解比的基本性质。

  难点:

  正确应用比的基本性质化简比。

  课件、答题纸、实物投影。

  师:同学们先来回忆一下,关于比已经学习了什么知识?

  预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。

  师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变的性质,分数有分数的基本性质。联想这两个性质想一想,在比中有没有类似的性质呢?

  板书:比的基本性质。

  学生纷纷猜想比的基本性质。

  根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  1.教学比的基本性质。

  师:比和除法、分数一样,也具有属于它自己的性质,那么是否和大家猜想的一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。

  教师说明合作要求。

  (1)独立完成:写出一个比,并用自己喜欢的方法进行验证。

  (2)小组讨论学习。

  ①每个同学分别向组内同学展示自己的研究成果,并依次交流。(其他同学表明是否赞同此同学的结论。)

  ②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。

  ③选派一个同学代表小组进行发言。

  (3)集体交流。(要求小组发言代表结合具体的例子在展台上进行讲解。)

  (4)全班验证。

  2.完善归纳,概括出比的基本性质。

  10∶15=10÷15==

  15∶9=15÷9=

  16∶20=(16

  ○

  □)∶(20

  ○

  □)

  上题中○内可以怎样填?□内可以填任意数吗?为什么?

  (1)学生发表自己的见解并说明理由,教师完善并板书。

  (2)学生打开书本读一读比的基本性质,教师板书课题:比的基本性质。

  3.深化认识。

  利用比的基本性质做出准确判断:

  (1)8∶10=(8+10)∶(10+10)=18∶20( )

  (2)12∶16=(12÷6)∶(16÷4)=2∶4( )

  (3)0.8∶1=(0.8×10)∶(1×10)=8∶10( )

  (4)比的前项乘3,要使比值不变,比的后项应除以3。

  ( )

  4.比的基本性质的应用。

  (1)引导学生自学最简整数比的相关知识。

  预设:前项、后项互质的整数比称为最简整数比。

  (2)从下列各比中找出最简整数比,并简述理由。

  3∶4 18∶12 19∶10 ∶ 0.75∶2

  (3)化简前项、后项都是整数的比。(课件出示教材第50页例1(1))

  学生独立尝试,化简后交流。

  (除以最大公因数和逐步除以公因数两种方法,重点强调除以最大公因数的方法。)

  (4)化简前项、后项出现分数、小数的比。(课件出示教材第51页例1(2))

  四人小组讨论研究,找到化简的方法。

  预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。

  (5)归纳小结:化简时,如果比的前项和后项都是整数,可以同时除以它们的最大公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。

  5.方法补充,区分化简比和求比值。

  )

  还可以用什么方法化简比?(求比值)化简比和求比值有什么不同?

  预设:化简比的最后结果是一个比,求比值的最后结果是一个数。

  1.把下面各比化成最简单的整数比。(出示教材第51页“做一做”。)

  2.教材第53页“练习十一”第4题。学生口答完成。

  这节课你有什么收获?还有什么疑问?

  比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。基于猜想的学习必定需要来自学生的自主探究进行验证,而合作探究又是一种良好的学习方式,但合作学习不能流于形式。合作学习首先要让学生独立思考,让学生产生自己的想法,然后再进行合作交流,交流过程中不仅培养了学生的推理概括能力,同时也真正内化了来自猜想的“比的基本性质”,从而大大提高了合作学习的实效性。第3课时比的应用

  教材第54页的内容。

  1.能在实例的分析中理解按比分配的实际意义。

  2.初步掌握按比分配的解题方法,运用所学知识解决按比分配的实际问题。

  3.通过贴近学生生活的实例学习,在观察、研讨、交流中让学生感受到数学学习和活动的乐趣。

  重点:理解按比分配的意义,能运用比的意义解决按比分配的实际问题。

  难点:自主探索解决按比分配实际问题的策略,能运用不同的方法多角度解决按比分配的实际问题。

  课件。

  课件出示:一个农场计划把100公顷地平均分成2份,分别播种小麦和玉米。小麦和玉米各播种多少公顷?播种面积的比是多少?(指名学生回答)

  师:这道题是把100公顷平均分成2份,这是一道平均分配的应用题。在生产和生活中,使用平均分配方法的实例很多,但是在工农业生产和日常生活中,还有一种分配方法应用也很广泛,那就是把一个数量按照一定的比来进行分配。比如,配制一种混凝土需要2份水泥、3份沙子和5份石子。这种把一个数量按照一定的比来进行分配的方法通常叫做按比例分配。也就是我们今天要学的比的应用。(板书课题:比的应用)

  1.课件出示教材第54页例2。

  师:题目中要配制什么?(配制500

  mL的稀释液)

  师:是按什么进行配制的?(浓缩液和水的体积按1∶4的比进行配制)

  师:“浓缩液和水的体积比是1∶4”是什么意思?

  生:就是说在500

  mL的稀释液中,浓缩液的体积占1份,水的体积占4份,一共是5份。

  师:浓缩液的体积占稀释液体积的几分之几?水的体积占稀释液体积的几分之几?

  师:你能求出浓缩液和水的体积各是多少毫升吗?

  引导学生小组讨论解法,交流汇报。结合学生回答,板书解法。

  思路一:先把比化成分数,用分数乘法来解答。

  稀释液平均分成的份数:1+4=5(份)

  浓缩液的体积:500×=100(mL)

  水的体积:500×=400(mL)

  思路二:把比看作分得的份数,先求一份数,再求几份数。

  稀释液平均分成的份数:1+4=5(份)

  浓缩液的体积:500÷5×1=100(mL)

  水的体积:500÷5×4=400(mL)

  2.验证所求问题。

  方法一:把求得的浓缩液和水的体积相加,看是不是等于稀释液的体积。

  方法二:把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1∶4。

  3.明确按比例分配的意义。

  在日常生活中,我们常常需要把一个数按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。(板书:按比例分配)

  4.整理解题思路。

  (1)按比例分配的问题可以转化成整数的归一问题,即先用除法求出每份数,再用乘法求出几份数。(板书:整数的归一问题)

  (2)按比例分配的问题也可以转化成分数问题,先把比转化成分数,再用总数×分率。

  1.教材第55页“练习十二”第1、2题。

  第1、2题都是按比例分配的问题,但描述的方式不同,要引导学生善于转换各种信息。

  2.教材第55页“练习十二”第3题。学生独立完成,并组内交流。

  3.教材第56页“练习十二”第11题。

  注意引导学生先求出一个长、一个宽、一个高的长度和,再求解。

  今天这节课我们主要研究了什么?说说你的收获和感受。

  本节课的重点是掌握按比例分配类应用题的结构,分析应用题中的数量关系,难点是比与分数的转化。为了能在教学中化解难点,使学生轻松进入本节课的学习,课一开始我就将“平均分配”与“按比例分配”的不同用事例展示给学生,为例题的教学做好准备。把书上的例2作为尝试题,让学生独立尝试、交流,最后进行小结。这样不但培养了学生独立审题、分析的能力,而且进一步加深对两种方法的理解,让学生初尝成功的乐趣。

六年级数学上册课件【篇6】

  [教学内容]

  教科书第98~99页例2、练习十九第1~3题。

  [教材简析]

  本节内容是在学生理解分数意义的基础上进行教学的。百分数在生活中有着广泛的应用,现实世界为百分数的学习提供了丰富的学习素材。例1安排了三个层次的学习活动,引导学生逐步理解百分数的意义。第一层次,呈现学校篮球队3名队员在投篮练习中投篮次数和投中次数的统计表,并提出问题,引导学生通过比较表中分数的大小作出判断。第二层次,将表中的几个分数分别改写成分母是100的分数,并比较它们的大小,初步体会百分数的特点和作用。第三层次,在学生初步感知百分数的特点和作用的基础上,揭示百分数的概念,介绍百分数的读、写方法。在试一试与练习中进一步完善和理解百分数的意义,初步体会百分数与分数、比之间的联系,初步了解百分率,为进一步学习百分数积累经验。

  [教学目标]

  1、使学生在现实的情境中,初步理解百分数的意义,会正确地读、写百分数。

  2、使学生经历百分数意义的探索过程,体会百分数与分数、比的联系和区别,积累数学活动经验,进一步反站数感。

  3、使学生在用百分数描述和解释生活现象的过程中,体会百分数与生活的密切联系,增强自主探索与合作交流的意识。

  [教学重点]

  理解百分数的意义,会正确读、写百分数。

  [教学难点]

  体会百分数与分数、比的联系与区别。

  [教具准备]

  课件;课前布置学生收集生活中的百分数。

  [教学过程]

  谈话:同学们喜欢看篮球赛吗?说到篮球就会让我们想到一个人,你们知道是谁?

  (姚明)这里有一项关于姚明的数据统计

  (出示)

  据统计:姚明在NBA比赛中的罚球命中率一向很高,前两个赛季罚球命中率高达81%,但上赛季下降到了78.3%。

  (两个百分数用红色表示)

  教师:大家认识红色的数吗?看到这两个数能知道些什么呢?今天我们共同认识这个新朋友,你知道他叫什么名字吗?

  (出示课题:认识百分数)

  教师:关于百分数的知识,你想了解些什么?

  学生说一说自己的看法。

  1、出示例题,引发探究

  例1:学校篮球队组织投篮练习,王老师对其中三名队员的投篮情况进行了统计分析。

  教师:我们来看看比赛的数据显示。

  (出示表格)

  姓名

  投篮次数投中次数

  李星明2516

  张小华2013

  吴力军3018

  教师:如果你是教练,根据这张表格里的数据,你能判断出哪个队员投篮的成绩好一些?为什么?

  学生独立思考,并在小组中交流想法。

  组织学生在班级中进行讨论,学生可能会提出不同的比较方法,如:谁投中的次数多,谁的成绩就好一些;谁失球的次数最少,谁的成绩就好一些;算投中的次数占投篮次数的几分之几(投中的比率),再比较这几个分数,谁大就表示谁的成绩好一些。

  引导学生比较这些方法,并明确最后一种方法是合理的,并在表格的右边增加投篮的比率一栏。

  2、初步理解百分数的意义

  学生独立计算三名队员投中的比率。

  指名报计算结果,教师完成统计表。(出示书上完整的表格)

  让学生说一说16/25、13/20、18/35分别表示哪个数量是哪个数量的几分之几。

  提问:根据上面的计算结果,你能比较出谁投中的比率高一些?

  学生自主探索比较的方法。

  组织学生在班级中进行交流,学生的方法可以是把三个分数,先两个两个比较,再确定哪个分数最大,或者先把三个分数一次性通分,再比较大小,也可以把它们都改写成小数再比较大小。

  谈话:为了便于统计和比较,通常把这些分数用分母是100的分数来表示。

  学生按要求独立进行改写。

  指名口答改写的结果,教师板演。

  提问:64/100表示哪两个数量比较?表示哪个数量是哪个数量的百分之几?

  再让学生说一说65/100、60/100的实际含义。

  提问:现在能很快看出谁投中的比率高一些?

  学生:张小华投中的比率高一些。

  说明:像上面这样表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫做百分比或百分率。

  提问:百分数怎样写,怎样读呢?

  学生自学课本99页试一试上面的内容。

  组织学生说一说读法和写法,教师进一步示范64%的读、写法。

  提问:百分号相当于分数中的什么部分?用百分号形式写分数,什么变了?什么没变?

  学生模仿读一读,写一写。

  学生照样子表示出65/100、60/100,先写出来,再读一读。

  提问:读百分数时要注意什么?

  说明:百分数不读作一百分之几,而要读作百分之几。

  提问:你能说说黑板上百分数是什么意思?(尽量引出投篮命中率为后面的百分率作铺垫)

  教师:请大家在规定的时间里写些自己喜欢的百分数,要求一个比一个写得好。记时开始。(停,时间不是很长)

  师:如果老师要求写十个,请用今天学到的知识描述一下你写了几个。

  学生1:我写了5个,我完成了50%

  学生2:我写了7个,我完成了70%

  教师:如果不直接告诉别人,让别人猜猜你写了几个?

  学生1:我还有70%没有完成;

  学生2:我写好的接近50%;

  学生3:

  [设计意图:创设学生感兴趣话题入手,根据统计表提出谁的成绩好一些?引发学生思考,在交流中认识到通过比较三个分数的大小作出判断,并将分数再分别改写成分母是100的分数,从而初步体会到百分数的特点和作用,揭示百分数的概念,在学生自学基础上讨论百分数的读法和写法。学生自主写喜欢的百分数的环节,让学生再次感受了百分数的意义和作用。]

  试一试

  指导学生做一做。

  第(1)题

  引导学生:根据男生人数是女生的45%,如果把女生人数看作100份,那么男生人数相当于这样的多少份?

  指名回答男生人数是女生的几分之几,男生与女生人数的比是几比几?

  第(2)题

  先让学生说一说近视率的含义是什么,再在书上填一填。

  提问:通过解答这两题,谁能说一说对百分数又叫做百分比或百分率的理解吗?

  学生在小组中交流后,在班级里说一说。

  明确:百分数的本质是表示两个数量的倍比关系,因此把百分数又叫做百分比或百分率是合适的。

  练一练第1题

  学生看题,理解题意,独立做一做。

  做好,交流填写结果。并具体说一说某个百分数表示的实际含义。

  说明:百分数可以表示一个整体中的部分与这个整体的关系。

  第2题

  教师:在日常生活中,你还见过哪些百分数?

  在小组里说一说,并说出这些百分数的含义,再组织学生在班级中交流。

  练习十九第1题

  同座同学互相读一读,并说出每个百分数的含义。

  指名分别说一说每个百分数的含义。

  教师:从三幅图中分别能知道些什么?你还能说出一些与100%有关的例子吗?

  练习十九第2题

  学生独立写一写,写好在小组中交流。

  组织学生交流写法,并说一说百分数表示的含义。

  教师:分母是一百的分数都可以用百分数表示吗?

  练习十九第3题

  出示题,让学生试着判断,并说明理由。

  明确:百分数只表示两个数量的倍比关系,不用来表示某个具体数量。百分数是一种特殊的分数,后面不带单位名称,而分数既可以表示一个具体的数,又可以表示两个数的比,在表示一个具体的数量时,分数后面可以带单位名称。

  教师:今天这节课你有什么收获?

  教师:一个人的收获不仅来自于1%的灵感,更重要的来自于99%的汗水,如果每一节课同学们都能有一点收获,日积月累你们100%会成为一个学识渊博的人。(出示:成功=99%的汗水+1%的灵感)

  教师:你能用百分数来描述你这节课的感受吗?

  [设计意图:选择现实的素材,让学生读、写百分数,说百分数的含义,既练习了百分数的读法,又巩固了百分数的意义,还能让学生体会到生活中处处有百分数,感受百分数的应用价值。在练习三的第3题学生通过判断,了解了百分数与分数的区别,再次加深对百分数意义的理解。课的结束前学生用百分数描述学习的感受,检验了学生对百分数意义的理解和体会。]

本文链接:http://www.51sang.com/duilian/15265.html

版权声明:本文为 “对联网” 原创文章,转载请附上原文出处链接及本声明!

标签:
对联网
对联大全网专门分享经典对联知识,内容包括春联、对对联、春节对联、节日对联、 结婚对联、乔迁对联、挽联、行业对联、名胜古迹对联、对联横批等对联知识,为大家提供在线学习交流平台。
对联资讯
对联大全
对联知识
对联故事
谐趣对联
对联故事
copyright © 2023 对联大全 网站地图
京ICP备13028492号